A priori error estimates of regularized elliptic problems
نویسندگان
چکیده
منابع مشابه
A priori error estimates for elliptic optimal control problems with bilinear state equation
In this paper a priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. We derive a priori error estimates for the discretization error in the control variable and confirm our theoretical resul...
متن کاملA priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems
The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L2 and the H1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficien...
متن کاملElliptic Reconstruction and a Posteriori Error Estimates for Parabolic Problems
It is known that the energy technique for a posteriori error analysis of finite element discretizations of parabolic problems yields suboptimal rates in the norm L∞(0, T ; L2(Ω)). In this paper we combine energy techniques with an appropriate pointwise representation of the error based on an elliptic reconstruction operator which restores the optimal order (and regularity for piecewise polynomi...
متن کاملResidual type a posteriori error estimates for elliptic obstacle problems
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we give an a posteriori error estimates with constitutive law for some obstacle problem. The error estimator involves some parameter ε appeared in some penalized equation.
متن کاملStar-Based a Posteriori Error Estimates for Elliptic Problems
We give an a posteriori error estimator for nonconforming finite element approximations of diffusionreaction and Stokes problems, which relies on the solution of local problems on stars. It is proved to be equivalent to the energy error up to a data oscillation, without requiring Helmholtz decomposition of the error nor saturation assumption. Numerical experiments illustrate the good behavior a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2020
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-020-01152-w